Boolean and Beyond
サービス導入事例私たちについてAI活用ガイド採用情報お問い合わせ
Boolean and Beyond

AI導入・DX推進を支援。業務効率化からプロダクト開発まで、成果にこだわるAIソリューションを提供します。

会社情報

  • 私たちについて
  • サービス
  • ソリューション
  • Industry Guides
  • 導入事例
  • AI活用ガイド
  • 採用情報
  • お問い合わせ

サービス

  • AI搭載プロダクト開発
  • MVP・新規事業開発
  • 生成AI・AIエージェント開発
  • 既存システムへのAI統合
  • レガシーシステム刷新・DX推進
  • データ基盤・AI基盤構築

Resources

  • AI Cost Calculator
  • AI Readiness Assessment
  • Tech Stack Analyzer
  • AI-Augmented Development

AI Solutions

  • RAG Implementation
  • LLM Integration
  • AI Agents Development
  • AI Automation

Comparisons

  • AI-First vs AI-Augmented
  • Build vs Buy AI
  • RAG vs Fine-Tuning
  • HLS vs DASH Streaming

Locations

  • Bangalore·
  • Coimbatore

法的情報

  • 利用規約
  • プライバシーポリシー

お問い合わせ

contact@booleanbeyond.com+91 9952361618

© 2026 Boolean & Beyond. All rights reserved.

バンガロール、インド

Boolean and Beyond
サービス導入事例私たちについてAI活用ガイド採用情報お問い合わせ
Solutions/Video Processing/AI-Powered Video Analysis and Metadata

AI-Powered Video Analysis and Metadata

Apply computer vision and AI to automatically tag, transcribe, moderate, and analyze video content at scale.

What AI capabilities can be applied to video content?

AI video analysis includes object and scene detection for auto-tagging, speech-to-text for searchable transcripts, content moderation, highlight detection, and video summarization. AWS Rekognition, Google Video AI, and Azure Video Indexer provide pre-built capabilities.

AI Video Analysis Overview

AI adds value throughout the video lifecycle:

During upload: - Content moderation (block policy violations) - Quality assessment (blur, darkness detection) - Duplicate detection

During processing: - Object and scene tagging - Speech-to-text transcription - Face detection and recognition - Text/logo detection (OCR)

Post-processing: - Highlight and chapter detection - Thumbnail selection - Search index generation - Recommendation signals

The key is integrating AI at the right pipeline stage for your use case, balancing accuracy, cost, and latency.

Automated Content Tagging

Computer vision models detect objects, scenes, activities, and concepts in video frames.

How it works: - Extract frames at regular intervals (1-2 fps for cost efficiency) - Run object/scene detection on each frame - Aggregate detections with confidence thresholds - Generate tags with timestamps

Use cases: - Search: Find all videos containing "dog" or "beach" - Organization: Auto-categorize by content type - Recommendations: Similar content discovery - Compliance: Detect restricted content

Provider options: - AWS Rekognition Video: Good accuracy, AWS-native - Google Video AI: Best accuracy, higher cost - Azure Video Indexer: Comprehensive, includes faces - Custom models: Train on your specific content domain

Cost optimization: - Sample frames, don't analyze every frame - Use lower resolution for detection - Cache results, don't re-analyze unchanged content

Speech Recognition and Transcription

Modern speech-to-text generates accurate, searchable transcripts across languages.

Capabilities: - Real-time or batch transcription - Multi-language support - Speaker diarization (who said what) - Punctuation and formatting - Custom vocabulary for domain terms

Applications: - Closed captions/subtitles: Accessibility compliance - Search: Full-text search within videos - Translation: Auto-generate multi-language subtitles - Analysis: Topic extraction, sentiment analysis

Provider comparison: - Whisper (OpenAI): Best accuracy, self-hostable - AWS Transcribe: Good accuracy, AWS-native - Google Speech-to-Text: Multi-language strength - AssemblyAI: Developer-friendly API

Best practices: - Always offer human correction interface - Store both raw transcription and corrected version - Use custom vocabulary for industry terms - Consider real-time vs batch based on use case

Content Moderation

AI moderation detects policy violations before content goes live.

Detection categories: - Nudity and explicit content - Violence and gore - Hate symbols and gestures - Weapons and dangerous items - Spam and policy violations

Implementation patterns: - Pre-publish gate: Block until review - Confidence thresholds: Auto-approve high confidence safe, flag uncertain - Human review queue: AI triage, human decision - Post-publish monitoring: Catch edge cases

Accuracy considerations: - False positives frustrate legitimate users - False negatives risk platform integrity - Tune thresholds based on risk tolerance - Context matters (news vs entertainment)

Provider options: - AWS Rekognition Content Moderation - Google Cloud Vision SafeSearch - Azure Content Moderator - Specialized providers (Hive, Spectrum Labs)

For UGC platforms, content moderation is essential. Combine automated detection with efficient human review workflows.

Intelligent Summarization and Highlights

AI identifies key moments to create highlight reels, chapter markers, and video summaries.

Techniques: - Scene change detection: Visual transitions - Audio analysis: Applause, music changes, speech patterns - Engagement data: Where viewers rewatch, share, or engage - Content analysis: Action sequences, key dialogues

Applications: - Auto-chapters: YouTube-style chapter markers - Highlight reels: Sports, gaming, events - Preview clips: Trailer generation - Skip intro/recap: Netflix-style navigation

Implementation approach: 1. Detect candidate moments (visual, audio, engagement) 2. Score by importance/interestingness 3. Select top N moments with diversity 4. Generate clips with transitions

Considerations: - Combine multiple signals for best results - Context matters (sports highlights differ from lecture summaries) - Human curation improves quality - A/B test highlight selection algorithms

Related Articles

Building Scalable Video Processing Pipelines

Architecture patterns for video pipelines that handle thousands of concurrent uploads with reliability and cost efficiency.

Read article

Video Infrastructure Cost Optimization

Strategies to reduce transcoding, storage, and CDN costs without sacrificing quality or user experience.

Read article
Back to Video Processing Overview

How Boolean & Beyond helps

Based in Bangalore, we help media companies, EdTech platforms, and enterprises across India build video infrastructure that scales reliably and optimizes costs.

Architecture Advisory

We help you choose between build vs. buy, design transcoding pipelines, and plan CDN strategies based on your requirements.

Implementation

We build custom video pipelines or integrate managed services like Mux, Cloudflare Stream, and AWS MediaConvert into your product.

Cost Optimization

We optimize encoding ladders, storage strategies, and CDN configurations to reduce costs without sacrificing quality.

AI導入について 相談してみませんか?

御社の課題をお聞かせください。24時間以内に、AI活用の可能性と具体的な進め方について無料でご提案いたします。

Registered Office

Boolean and Beyond

825/90, 13th Cross, 3rd Main

Mahalaxmi Layout, Bengaluru - 560086

Operational Office

590, Diwan Bahadur Rd

Near Savitha Hall, R.S. Puram

Coimbatore, Tamil Nadu 641002

Boolean and Beyond

AI導入・DX推進を支援。業務効率化からプロダクト開発まで、成果にこだわるAIソリューションを提供します。

会社情報

  • 私たちについて
  • サービス
  • ソリューション
  • Industry Guides
  • 導入事例
  • AI活用ガイド
  • 採用情報
  • お問い合わせ

サービス

  • AI搭載プロダクト開発
  • MVP・新規事業開発
  • 生成AI・AIエージェント開発
  • 既存システムへのAI統合
  • レガシーシステム刷新・DX推進
  • データ基盤・AI基盤構築

Resources

  • AI Cost Calculator
  • AI Readiness Assessment
  • Tech Stack Analyzer
  • AI-Augmented Development

AI Solutions

  • RAG Implementation
  • LLM Integration
  • AI Agents Development
  • AI Automation

Comparisons

  • AI-First vs AI-Augmented
  • Build vs Buy AI
  • RAG vs Fine-Tuning
  • HLS vs DASH Streaming

Locations

  • Bangalore·
  • Coimbatore

法的情報

  • 利用規約
  • プライバシーポリシー

お問い合わせ

contact@booleanbeyond.com+91 9952361618

© 2026 Boolean & Beyond. All rights reserved.

バンガロール、インド