Boolean and Beyond
サービス導入事例私たちについてAI活用ガイド採用情報お問い合わせ
Boolean and Beyond

AI導入・DX推進を支援。業務効率化からプロダクト開発まで、成果にこだわるAIソリューションを提供します。

会社情報

  • 私たちについて
  • サービス
  • ソリューション
  • Industry Guides
  • 導入事例
  • AI活用ガイド
  • 採用情報
  • お問い合わせ

サービス

  • AI搭載プロダクト開発
  • MVP・新規事業開発
  • 生成AI・AIエージェント開発
  • 既存システムへのAI統合
  • レガシーシステム刷新・DX推進
  • データ基盤・AI基盤構築

Resources

  • AI Cost Calculator
  • AI Readiness Assessment
  • Tech Stack Analyzer
  • AI-Augmented Development

AI Solutions

  • RAG Implementation
  • LLM Integration
  • AI Agents Development
  • AI Automation

Comparisons

  • AI-First vs AI-Augmented
  • Build vs Buy AI
  • RAG vs Fine-Tuning
  • HLS vs DASH Streaming

Locations

  • Bangalore·
  • Coimbatore

法的情報

  • 利用規約
  • プライバシーポリシー

お問い合わせ

contact@booleanbeyond.com+91 9952361618

© 2026 Boolean & Beyond. All rights reserved.

バンガロール、インド

Boolean and Beyond
サービス導入事例私たちについてAI活用ガイド採用情報お問い合わせ
Solutions/Recommendations/Embeddings and Vector Search for Recommendations

Embeddings and Vector Search for Recommendations

How modern recommendation systems use neural embeddings and approximate nearest neighbor search for personalization at scale.

How are embeddings used in modern recommendation systems?

Embeddings represent users and items as dense vectors in a shared latent space where proximity indicates relevance. Neural networks learn these embeddings from interaction data. Two-tower architectures separate user and item encoders for efficient retrieval. Pre-trained embeddings from language/image models enhance content understanding.

What Are Embeddings?

Embeddings are dense vector representations (typically 64-512 dimensions) that capture semantic meaning.

**Key insight:** Similar entities have similar embeddings. In a well-trained embedding space:

  • Users with similar preferences are close together
  • Items that appeal to similar users are close together
  • User-item proximity indicates relevance

**Learning embeddings:**

  • Train on interaction data (clicks, purchases, ratings)
  • Optimize so positive interactions have high similarity
  • Negative sampling ensures non-interactions have low similarity

The magic: embeddings capture patterns that explicit features miss. A user embedding might encode "prefers indie films with strong female leads" without anyone defining that category.

Two-Tower Architecture

The dominant architecture for large-scale recommendations:

**Structure:**

  • User tower: neural network encoding user features → user embedding
  • Item tower: neural network encoding item features → item embedding
  • Dot product of embeddings predicts interaction likelihood

**Why it works at scale:**

  • Item embeddings can be pre-computed and cached
  • At serving time, compute user embedding once
  • Find nearest item embeddings using ANN search
  • Sub-millisecond retrieval over millions of items

**Real-world usage:**

  • YouTube: retrieves ~1000 candidates from billions of videos
  • Pinterest: visual similarity for pin recommendations
  • Airbnb: listing embeddings for search ranking

Training tips: use in-batch negatives, hard negative mining, and temperature scaling for better embeddings.

Approximate Nearest Neighbor Search

Finding exact nearest neighbors in high dimensions is slow. ANN algorithms trade small accuracy loss for massive speed gains:

**HNSW (Hierarchical Navigable Small World)**

  • Graph-based, excellent recall/speed tradeoff
  • Used by Pinecone, Weaviate, Qdrant

**IVF (Inverted File Index)**

  • Clusters vectors, searches relevant clusters
  • Good for very large datasets, used by FAISS

**Product Quantization**

  • Compresses vectors for memory efficiency
  • Often combined with IVF

**Choosing a solution:**

  • FAISS: Open-source, great for self-hosting
  • ScaNN: Google's library, excellent for large scale
  • Managed: Pinecone, Weaviate, Qdrant for simpler operations

Typical performance: <10ms to search 100M+ vectors with 95%+ recall.

Multi-Modal and Pre-trained Embeddings

Modern systems combine multiple embedding types:

**Text embeddings** — Product descriptions, reviews, user queries

  • BERT, sentence-transformers for semantic understanding
  • Capture meaning beyond keyword matching

**Image embeddings** — Product photos, user-generated content

  • CLIP, ResNet for visual similarity
  • "Visually similar items" recommendations

**Behavioral embeddings** — Learned from interaction sequences

  • Capture user journey patterns
  • Session-aware recommendations

**Graph embeddings** — From user-item interaction graphs

  • Capture network structure (users who interact with same items)
  • Node2Vec, GraphSAGE approaches

**Fusion strategies:**

  • Early fusion: concatenate features before encoding
  • Late fusion: combine embedding scores
  • Learned fusion: train a model to weight different embeddings

Related Articles

Collaborative vs Content-Based Filtering

Understand the core recommendation algorithms: when to use collaborative filtering, content-based methods, or hybrid approaches.

Scaling Recommendation Systems

Architecture patterns for recommendation systems serving millions of users: candidate generation, ranking, and infrastructure.

Real-Time vs Batch Recommendations

When to pre-compute recommendations offline vs. generate them in real-time, and how to build hybrid systems.

Explore more recommendation system topics

Back to AI Recommendation Engines

How Boolean & Beyond helps

Based in Bangalore, we help enterprises across India and globally build recommendation systems that drive measurable engagement and revenue lift.

Data-Driven Approach

We start with your data, establish baselines, and iterate on algorithms that provide measurable lift—not theoretical improvements.

Production Architecture

Our systems handle real-world scale with proper latency budgets, caching strategies, and failover mechanisms.

Continuous Optimization

We set up A/B testing frameworks and feedback loops so your recommendations get smarter over time.

AI導入について 相談してみませんか?

御社の課題をお聞かせください。24時間以内に、AI活用の可能性と具体的な進め方について無料でご提案いたします。

Registered Office

Boolean and Beyond

825/90, 13th Cross, 3rd Main

Mahalaxmi Layout, Bengaluru - 560086

Operational Office

590, Diwan Bahadur Rd

Near Savitha Hall, R.S. Puram

Coimbatore, Tamil Nadu 641002

Boolean and Beyond

AI導入・DX推進を支援。業務効率化からプロダクト開発まで、成果にこだわるAIソリューションを提供します。

会社情報

  • 私たちについて
  • サービス
  • ソリューション
  • Industry Guides
  • 導入事例
  • AI活用ガイド
  • 採用情報
  • お問い合わせ

サービス

  • AI搭載プロダクト開発
  • MVP・新規事業開発
  • 生成AI・AIエージェント開発
  • 既存システムへのAI統合
  • レガシーシステム刷新・DX推進
  • データ基盤・AI基盤構築

Resources

  • AI Cost Calculator
  • AI Readiness Assessment
  • Tech Stack Analyzer
  • AI-Augmented Development

AI Solutions

  • RAG Implementation
  • LLM Integration
  • AI Agents Development
  • AI Automation

Comparisons

  • AI-First vs AI-Augmented
  • Build vs Buy AI
  • RAG vs Fine-Tuning
  • HLS vs DASH Streaming

Locations

  • Bangalore·
  • Coimbatore

法的情報

  • 利用規約
  • プライバシーポリシー

お問い合わせ

contact@booleanbeyond.com+91 9952361618

© 2026 Boolean & Beyond. All rights reserved.

バンガロール、インド